Gibbs Sampling for Logistic Normal Topic Models with Graph-Based Priors

نویسندگان

  • David Mimno
  • Hanna M. Wallach
  • Andrew McCallum
چکیده

Previous work on probabilistic topic models has either focused on models with relatively simple conjugate priors that support Gibbs sampling or models with non-conjugate priors that typically require variational inference. Gibbs sampling is more accurate than variational inference and better supports the construction of composite models. We present a method for Gibbs sampling in non-conjugate logistic normal topic models, and demonstrate it on a new class of topic models with arbitrary graph-structured priors that reflect the complex relationships commonly found in document collections, while retaining simple, robust inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Inference for Logistic-Normal Topic Models

Logistic-normal topic models can effectively discover correlation structures among latent topics. However, their inference remains a challenge because of the non-conjugacy between the logistic-normal prior and multinomial topic mixing proportions. Existing algorithms either make restricting mean-field assumptions or are not scalable to large-scale applications. This paper presents a partially c...

متن کامل

Integrating Out Multinomial Parameters in Latent Dirichlet Allocation and Naive Bayes for Collapsed Gibbs Sampling

This note shows how to integrate out the multinomial parameters for latent Dirichlet allocation (LDA) and naive Bayes (NB) models. This allows us to perform Gibbs sampling without taking multinomial parameter samples. Although the conjugacy of the Dirichlet priors makes sampling the multinomial parameters relatively straightforward, sampling on a topic-by-topic basis provides two advantages. Fi...

متن کامل

jLDADMM: A Java package for the LDA and DMM topic models

The Java package jLDADMM is released to provide alternatives for topic modeling on normal or short texts. It provides implementations of the Latent Dirichlet Allocation topic model and the one-topic-per-document Dirichlet Multinomial Mixture model (i.e. mixture of unigrams), using collapsed Gibbs sampling. In addition, jLDADMM supplies a document clustering evaluation to compare topic models.

متن کامل

Fully Bayesian Logistic Regression with Hyper-Lasso Priors for High-dimensional Feature Selection

High-dimensional feature selection arises in many areas of modern sciences. For example, in genomic research we want to find the genes that can be used to separate tissues of different classes (eg. cancer and normal) from tens of thousands of genes that are active (expressed) in certain tissue cells. To this end, we wish to fit regression and classification models with a large number of feature...

متن کامل

Fully Bayesian spline smoothing and intrinsic autoregressive priors By PAUL

There is a well-known Bayesian interpretation for function estimation by spline smoothing using a limit of proper normal priors. The limiting prior and the conditional and intrinsic autoregressive priors popular for spatial modelling have a common form, which we call partially informative normal. We derive necessary and sufficient conditions for the propriety of the posterior for this class of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008